If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+8X=960
We move all terms to the left:
X^2+8X-(960)=0
a = 1; b = 8; c = -960;
Δ = b2-4ac
Δ = 82-4·1·(-960)
Δ = 3904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3904}=\sqrt{64*61}=\sqrt{64}*\sqrt{61}=8\sqrt{61}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{61}}{2*1}=\frac{-8-8\sqrt{61}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{61}}{2*1}=\frac{-8+8\sqrt{61}}{2} $
| 0=-3b^2+22b+16 | | m+7=3+1m+4 | | 2x^2+12x-684=0 | | -5(-4u+7)-8u=4(u-7)-9 | | ∣∣x10+7∣∣=8 | | 8x2-96x=0 | | 5h/9-10=643/45 | | 1/2x•x-9•x^2=360 | | -2(x+5)=6x-7+2(2x+2) | | 448=2(4x+9)+2x | | 12/3n=41/6 | | 7+4x=14+x | | 22(c-68)=20,900 | | u/5+9=35 | | 3^(4x)=3^(12) | | F(x)=12x+36/3x-6 | | 1=4(y-2)+5y | | 24=4(u+3)-2u | | 6w+5(w-8)=-29 | | 21=8x-19 | | 3.4t-1.7=6.8 | | 7x-9x6=5x-6 | | 8+6x=-x2 | | H=1600t-16t^2 | | 3m-10/5=7 | | y-(-10)=41 | | -2.2=0.25y+4.2 | | -15=4(x-6)-7x | | 12f–4f=56 | | 33/5g=191/2 | | 22/5r=9 | | 3x-7x=0 |